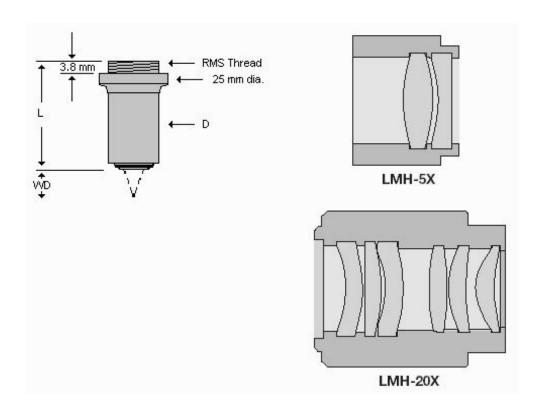
High Power Nd:YAG Microspot Focusing Objectives are designed to transmit and focus the high power radiation emitted by industrial Nd:YAG lasers.

	Energy
Materials	Throughput

>96-98% within design spectrum

Coating


High power damage-resistant, multilayer antireflection coating optimized for 532 nm or 1064 nm. Other coatings available upon request.

Damage Threshold

500 MW/m² NOTE:Power rating based upon 20ns pulses, 20 Hz, 532 nm or 1064 nm.

The high Power Nd:YAG Objectives are designed diffraction-limited performance at 1064 nm. Near-diffraction limited performance be achieved outside the design spectrum, including Inquire. visible spectrum. Focal length at 532 nm 2% shorter than 1064 nm.

Fused Silica

High Power Nd:YAG Laser Micro Spot FOCUSING OBJECTIVES

Catalog Number	Working Distance	Effective Focal Length	Numerical Aperture	Theoretical Focal Spot Diameter	Entrance Aperture	D	L
LMH-5X-532 or 1064	35 mm	40 mm	0.13	12 µm*	10 mm	21 mm	28 mm
LMH-10X-532 or 1064	15 mm	20 mm	0.25	6 μm*	10 mm	21 mm	28 mm
LMH-20X-532 or 1064	6 mm	10 mm	0.40	4 um*	8 mm	21 mm	38 mm

^{*}NOTE that Theoretical Focal Spot Diameter values are based on a Gaussian profile input beam at Design Wavelength which fills the entrance Aperture at $1/e^2$ limits.